/*****************************************************
Chip type : ATmega16
Program type : Application
AVR Core Clock frequency: 16.000000 MHz External Crystal
Memory model : Small
External RAM size : 0
Data Stack size : 256
*****************************************************/
#include mega16.h
#include delay.h
#include stdio.h
// Alphanumeric LCD Module functions
#asm
.equ __lcd_port=0x15 ;PORTC
#endasm
#include lcd.h>
#define ADC_VREF_TYPE 0x20
// Read the 8 most significant bits of the AD conversion result
unsigned char read_adc(unsigned char adc_input)
{
ADMUX=adc_input | (ADC_VREF_TYPE & 0xff);
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
// Wait for the AD conversion to complete
while ((ADCSRA & 0x10)==0);
ADCSRA|=0x10;
return ADCH;
}
// global variables
//unsigned int freq_array[]={50,100,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950,1000} ;
//unsigned int no_of_pulses[]={2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40} ;
//unsigned int pc_array[]={1,2,5,10,20,50,100,200,500,1000} ;
void PC_OUTPUTS(void);
void DELAY(void);
void CODE(void);
void ADC_DELAY(unsigned int);
unsigned int actual_delay_time,volt;
unsigned int FREQ_COUNTER=2;
unsigned int PC_COUNTER=1;
unsigned int var=1;
unsigned int var2=1;
unsigned int BTN_0=0;
unsigned int BTN_1=0;
unsigned int BTN_2=0;
unsigned int BTN_3=0;
unsigned int BTN_4=0;
unsigned int S_10=0;
unsigned int ON_OFF_FLAG=0; //CAL ON/OFF flag
//EEPROM VARS
#pragma warn-
eeprom unsigned int EE_FREQ_COUNTER=2 ;
eeprom unsigned int EE_PC_COUNTER=1 ;
unsigned int eeprom *ptr_EE_FREQ_COUNTER;
unsigned int eeprom *ptr_EE_PC_COUNTER;
#pragma warn+
unsigned int *ptr_FREQ_COUNTER,*ptr_PC_COUNTER;
//Timer 1 overflow interrupt service routine
interrupt [TIM1_OVF] void timer1_ovf_isr(void)
{
PORTD.7=~PORTD.7; //High-Low pulse
TCNT1=actual_delay_time;
}
interrupt [TIM0_OVF] void timer0_ovf_isr(void)
{
var++; //Approx. 10 sec delay
if (var > 10000)
{
var=1;
S_10++;
}
if(S_10 == 10)
{
PORTD.2=0; //High-Low pulse
S_10=0;
TCCR0=0b00000000;
}
TCNT0=0xFF;
}
interrupt [TIM2_OVF] void timer2_ovf_isr(void)
{
var2++; //Push buttons delay
if (var2 > 54000)
{
var2=1;
BTN_0=0;
BTN_1=0;
BTN_2=0;
BTN_3=0;
BTN_4=0;
}
TCNT2=0xFF;
}
void main(void)
{
// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;
// Port B initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTB=0xFF;
DDRB=0x00; //input push buttons
// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTC=0x00;
DDRC=0xff; //output lcd
// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0xff; //output led
DDRD.3=0;
PORTD.3=1;
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
TCCR0=0b00000000; //0b00000101;
TCNT0=0xFF;
OCR0=0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
TCNT1=55535;
TCCR1A=0b00000000;
TCCR1B=0b00000010; //SELECT CLOCK HRER CS
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
ASSR=0x00;
OCR2=0x00;
TCCR2=0b00000101;
TCNT2=0xFF;
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;
//Timer(s)/Counter(s) Interrupt(s) initialization
//TIMSK=0x00;
TIMSK=0b01000101; //6 bit timer2 0 bit tiemr0 2 bit timer1
// Analog Comparator initialization
// Analog Comparator:
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;
ADMUX=ADC_VREF_TYPE & 0xff;
ADCSRA=0xA6;
SFIOR&=0x1F;
lcd_init(20);
lcd_clear();
lcd_putsf("ETM");
ptr_EE_FREQ_COUNTER=&EE_FREQ_COUNTER;
ptr_EE_PC_COUNTER=&EE_PC_COUNTER;
ptr_FREQ_COUNTER=&FREQ_COUNTER;
ptr_PC_COUNTER=&PC_COUNTER;
*ptr_FREQ_COUNTER=*ptr_EE_FREQ_COUNTER;
*ptr_PC_COUNTER=*ptr_EE_PC_COUNTER;
#asm("sei")
DELAY();
PC_OUTPUTS();
// Watchdog Timer initialization
// Watchdog Timer Prescaler: OSC/256k
#pragma optsize-
WDTCR=0x1C;
WDTCR=0b00001111;
#ifdef _OPTIMIZE_SIZE_
#pragma optsize+
#endif
PORTD.7=0;
TCCR1A=0b00000000;
TCCR1B=0b00000000; //STOP TIMER
lcd_gotoxy(13,1);
lcd_putsf("OFF");
while (1)
{
//read voltage from PORTA.0 0 - 255
WDTCR=0b00001111;
volt=(unsigned int)read_adc(0); //100 us
if (S_10==0)
{
if(PIND.3==0)
{
PORTD.2=1;
S_10=1;
TCCR0=0b00000101;
}
}
DELAY();
WDTCR=0b00001111;
CODE();
delay_ms(350);
}; //END OF WHILE LOOP
} //END OF MAIN
void CODE()
{
//CAL ON OFF
if (PINB.4 == 0 && BTN_4==0)
{
if (ON_OFF_FLAG==1)
{
ON_OFF_FLAG=0;
lcd_gotoxy(13,1);
lcd_putsf("OFF");
PORTD.7=0;
TCCR1A=0b00000000;
TCCR1B=0b00000000; //STOP TIMER
}
else
{
ON_OFF_FLAG=1;
lcd_gotoxy(13,1);
lcd_putsf(" ON");
PC_OUTPUTS();
TCCR1A=0b00000000;
TCCR1B=0b00000010; //START TIMER prescaler=8
//PORTD.2=1;
//TCCR0=0b00000101;
}
BTN_4=1;
}
if (PINB.4 == 1)
BTN_4=0;
//INCREASE NO OF PULSES PORTB 0 PIN
if (PINB.0 == 0 && BTN_0==0)
{
if (FREQ_COUNTER < 40)
{
FREQ_COUNTER=FREQ_COUNTER+2;
*ptr_EE_FREQ_COUNTER=*ptr_FREQ_COUNTER;
}
else
{
FREQ_COUNTER=2;
*ptr_EE_FREQ_COUNTER=*ptr_FREQ_COUNTER;
}
BTN_0=1;
}
if (PINB.0 == 1)
BTN_0=0;
//DECREASE NO OF PULSES PORTB 1 PIN
if (PINB.1 == 0 && BTN_1==0)
{
if (FREQ_COUNTER > 2)
{
FREQ_COUNTER=FREQ_COUNTER - 2;
*ptr_EE_FREQ_COUNTER=*ptr_FREQ_COUNTER;
}
else
{
FREQ_COUNTER=40;
*ptr_EE_FREQ_COUNTER=*ptr_FREQ_COUNTER;
}
BTN_1=1;
}
if (PINB.1 == 1)
BTN_1=0;
//INCREASE IN PC COUNT PORTB 2 PIN
if (PINB.3 == 0 && BTN_2==0)
{
if (PC_COUNTER < 10)
{
PC_COUNTER++;
PC_OUTPUTS();
*ptr_EE_PC_COUNTER=*ptr_PC_COUNTER;
}
else
{
PC_COUNTER=1;
PC_OUTPUTS();
*ptr_EE_PC_COUNTER=*ptr_PC_COUNTER;
}
BTN_2=1;
}
if (PINB.3 == 1)
BTN_2=0;
//DECREAE IN PC COUNT PORTB 2 PIN
if (PINB.2 == 0 && BTN_3 == 0)
{
if (PC_COUNTER > 1)
{
PC_COUNTER--;
PC_OUTPUTS();
*ptr_EE_PC_COUNTER=*ptr_PC_COUNTER;
}
else
{
PC_COUNTER=10;
PC_OUTPUTS();
*ptr_EE_PC_COUNTER=*ptr_PC_COUNTER;
}
BTN_3=1;
}
if (PINB.2 == 1)
BTN_3=0;
//BATTERY INDICATION PORTB 5 PIN - LO 6 - OK 7 - CH
if (PINB.6 == 0)
{
lcd_gotoxy(10,0);
lcd_putsf("BAT OK");
}
else if (PINB.7 == 0)
{
lcd_gotoxy(10,0);
lcd_putsf("BAT CH");
}
else if (PINB.5 == 0)
{
lcd_gotoxy(10,0);
lcd_putsf("BAT LO");
}
else
{
lcd_gotoxy(10,0);
lcd_putsf(" ");
}
}
/*------------------------------------------------------------------------------
Procedure: PC_OUTPUTS
Inputs: none
Return: none
Description: Vary the 5 PC signals
------------------------------------------------------------------------------*/
void PC_OUTPUTS(void)
{
lcd_gotoxy(0,1);
switch (PC_COUNTER)
{
case 1:
PORTD.0=0;
PORTD.1=0;
PORTD.4=1;
PORTD.5=0;
PORTD.6=1;
//lcd_gotoxy(0,1);
lcd_putsf("CAL PC 1 ");
break;
case 2:
PORTD.0=0;
PORTD.1=1;
PORTD.4=0;
PORTD.5=1;
PORTD.6=0;
//lcd_gotoxy(0,1);
lcd_putsf("CAL PC 2 ");
break;
case 3:
PORTD.0=1;
PORTD.1=0;
PORTD.4=1;
PORTD.5=1;
PORTD.6=0;
//lcd_gotoxy(0,1);
lcd_putsf("CAL PC 5 ");
break;
case 4:
PORTD.0=0;
PORTD.1=0;
PORTD.4=1;
PORTD.5=1;
PORTD.6=0;
//lcd_gotoxy(0,1);
lcd_putsf("CAL PC 10 ");
break;
case 5:
PORTD.0=0;
PORTD.1=1;
PORTD.4=1;
PORTD.5=0;
PORTD.6=0;
//lcd_gotoxy(0,1);
lcd_putsf("CAL PC 20 ");
break;
case 6:
PORTD.0=1;
PORTD.1=0;
PORTD.4=1;
PORTD.5=0;
PORTD.6=0;
//lcd_gotoxy(0,1);
lcd_putsf("CAL PC 50 ");
break;
case 7:
PORTD.0=0;
PORTD.1=0;
PORTD.4=1;
PORTD.5=0;
PORTD.6=0;
//lcd_gotoxy(0,1);
lcd_putsf("CAL PC 100 ");
break;
case 8:
PORTD.0=0;
PORTD.1=1;
PORTD.4=0;
PORTD.5=0;
PORTD.6=0;
lcd_gotoxy(0,1);
lcd_putsf("CAL PC 200 ");
break;
case 9:
PORTD.0=1;
PORTD.1=0;
PORTD.4=0;
PORTD.5=0;
PORTD.6=0;
//lcd_gotoxy(0,1);
lcd_putsf("CAL PC 500 ");
break;
case 10:
PORTD.0=0;
PORTD.1=0;
PORTD.4=0;
PORTD.5=0;
PORTD.6=0;
lcd_gotoxy(0,1);
lcd_putsf("CAL PC 1000");
break;
default:
PORTD.0=0;
PORTD.1=0;
PORTD.4=1;
PORTD.5=1;
PORTD.6=0;
//lcd_gotoxy(0,1);
//sprintf(str_buffer,"ERROR PC - %u",PC_COUNTER) ;
lcd_putsf("INC MAG");
PC_COUNTER=1;
};
}
/*------------------------------------------------------------------------------
Procedure: ADC_DELAY
Inputs: DELAY (STEP) TIME
Return: none
Description: DELAY +/- 2.5%
------------------------------------------------------------------------------*/
void ADC_DELAY(unsigned int delay_time)
{
actual_delay_time=65535 - (delay_time*2-3);
if ( volt < 128)
{
actual_delay_time= 65535 -(( delay_time - (delay_time / 100) * (10 - (8 * volt / 100 ) ) ) )*2-3;
}
if (volt > 128 && volt < 256)
{
actual_delay_time= 65535 -(( delay_time + (delay_time / 100) * (8 * (volt - 128) / 100 ) ) )*2-3;
}
if (volt == 127 || volt == 128)
actual_delay_time=65535 - (delay_time*2-3);
WDTCR=0b00001111;
}
/*------------------------------------------------------------------------------
Procedure: DELAY
Inputs: none
Return: none
Description: Vary the Delay of signal
------------------------------------------------------------------------------*/
void DELAY(void)
{
lcd_gotoxy(0,0);
switch (FREQ_COUNTER)
{
case 2:
ADC_DELAY(10000);
lcd_putsf("PUL NO 2 ");
break;
case 4:
ADC_DELAY(5000);
lcd_putsf("PUL NO 4 ");
break;
case 6:
ADC_DELAY(3333);
lcd_putsf("PUL NO 6 ");
break;
case 8:
ADC_DELAY(2500);
lcd_putsf("PUL NO 8 ");
break;
case 10:
ADC_DELAY(2000);
lcd_putsf("PUL NO 10");
break;
case 12:
ADC_DELAY(1667);
lcd_putsf("PUL NO 12");
break;
case 14:
ADC_DELAY(1428);
lcd_putsf("PUL NO 14");
break;
case 16:
ADC_DELAY(1250);
lcd_putsf("PUL NO 16");
break;
case 18:
ADC_DELAY(1111);
lcd_putsf("PUL NO 18");
break;
case 20:
ADC_DELAY(1000);
lcd_putsf("PUL NO 20");
break;
case 22:
ADC_DELAY(909);
lcd_putsf("PUL NO 22");
break;
case 24:
ADC_DELAY(833);
lcd_putsf("PUL NO 24");
break;
case 26:
ADC_DELAY(769);
lcd_putsf("PUL NO 26");
break;
case 28:
ADC_DELAY(714);
lcd_putsf("PUL NO 28");
break;
case 30:
ADC_DELAY(667);
lcd_putsf("PUL NO 30");
break;
case 32:
ADC_DELAY(625);
lcd_putsf("PUL NO 32");
break;
case 34:
ADC_DELAY(588);
lcd_putsf("PUL NO 34");
break;
case 36:
ADC_DELAY(556);
lcd_putsf("PUL NO 36");
break;
case 38:
ADC_DELAY(526);
lcd_putsf("PUL NO 38");
break;
case 40:
ADC_DELAY(500);
lcd_putsf("PUL NO 40");
break;
default:
ADC_DELAY(500);
//sprintf(str_buffer,"ERROR-%u",FREQ_COUNTER) ;
lcd_putsf("INC/DEC");
FREQ_COUNTER=2;
};
}
No comments:
Post a Comment