SDA 3BIT OF PORTD
SCL 2BIT OF PORTD
WRITE_TO_EEPROM() WILL WRITE 2 VAR,
READ_PC_COUNTER() WILL SHOW HOW TO READ
============================
#include mega16.h
#include delay.h
#include stdio.h
// Alphanumeric LCD Module functions
#asm
.equ __lcd_port=0x15 ;PORTC
#endasm
#include
// I2C Bus functions
#asm
.equ __i2c_port=0x12 ;PORTD
.equ __sda_bit=3
.equ __scl_bit=2
#endasm
#include
#define ADC_VREF_TYPE 0x20
// Read the 8 most significant bits of the AD conversion result
unsigned char read_adc(unsigned char adc_input)
{
ADMUX=adc_input | (ADC_VREF_TYPE & 0xff);
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
// Wait for the AD conversion to complete
while ((ADCSRA & 0x10)==0);
ADCSRA|=0x10;
return ADCH;
}
// global variables
void DELAY(void);
//unsigned int freq_array[]={50,100,150,200,250,300,350,400,450,500,550,600,650,700,750,800,850,900,950,1000} ;
unsigned int no_of_pulses[]={2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40} ;
unsigned char data;
//CAL ON/OFF flag
unsigned int ON_OFF_FLAG=1;
unsigned int pc_array[]={1,2,5,10,20,50,100,200,500,1000} ;
void PC_OUTPUTS(void);
unsigned char str_buffer[20];
void READ_FREQ_COUNTER(void);
void READ_PC_COUNTER(void);
void WRITE_TO_EEPROM(void);
unsigned int FREQ_COUNTER=0;
unsigned int PC_COUNTER=0;
void main(void)
{
// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;
// Port B initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTB=0xFF;
DDRB=0x00; //input push buttons
// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTC=0x00;
DDRC=0xff; //output lcd
// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0xff; //output led
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;
//Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;
// Analog Comparator initialization
// Analog Comparator:
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;
ADMUX=ADC_VREF_TYPE & 0xff;
ADCSRA=0xA6;
SFIOR&=0x1F;
PORTD.2=0;
PORTD.3=0;
// I2C Bus initialization
i2c_init();
//WRITE_TO_EEPROM(); //this will reset both var to 0
READ_FREQ_COUNTER();
READ_PC_COUNTER();
lcd_init(20);
lcd_clear();
lcd_putsf("ETM");
delay_ms(2000);
DELAY();
PC_OUTPUTS();
while (1)
{
if (PINB.4 == 0)
if (ON_OFF_FLAG==1)
ON_OFF_FLAG=0;
else
ON_OFF_FLAG=1;
if (ON_OFF_FLAG==1)
{
data=read_adc(0); //outout 0 - 255 read voltage from PORTA.0
DELAY();
PORTD.7=1;
DELAY();
PORTD.7=0;
if (PINB.0 == 0)
{
if (FREQ_COUNTER < 19)
{
FREQ_COUNTER++;
WRITE_TO_EEPROM();
}
}
if (PINB.1 == 0)
{
if (FREQ_COUNTER > 0)
{
FREQ_COUNTER--;
WRITE_TO_EEPROM();
}
}
if (PINB.2 == 0)
{
if (PC_COUNTER < 9)
{
PC_COUNTER++;
PC_OUTPUTS();
WRITE_TO_EEPROM();
}
}
if (PINB.3 == 0)
{
if (PC_COUNTER > 0)
{
PC_COUNTER--;
PC_OUTPUTS();
WRITE_TO_EEPROM();
}
}
}
};
}
//------------------------------------------------------------------------------
// Procedure: DELAY
// Inputs: none
// Return: none
// Description: Vary the Delay of signal
//------------------------------------------------------------------------------
void DELAY(void)
{
switch (no_of_pulses[FREQ_COUNTER])
{
case 2:
// (int)data /10000 *10
delay_ms(500); //delay_ms(10);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 2");
break;
case 4:
delay_ms(600); //delay_ms(5);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 4");
break;
case 6:
delay_ms(700); // delay_us(3333);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 6");
break;
case 8:
delay_ms(800); // delay_us(2500);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 8");
break;
case 10:
delay_ms(900); // delay_ms(2);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 10");
break;
case 12:
delay_ms(1000); // delay_us(1667);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 12");
break;
case 14:
delay_ms(1100); // delay_us(1428);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 14");
break;
case 16:
delay_ms(2010); // delay_us(1250);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 16");
break;
case 18:
delay_ms(1300); // delay_us(1111);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 18");
break;
case 20:
delay_ms(1400); // delay_ms(1);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 20");
break;
//''''''''''''
case 22:
delay_ms(1500); // delay_us(909);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 22");
break;
case 24:
delay_ms(1600); // delay_us(833);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 24");
break;
case 26:
delay_ms(1700); // delay_us(769);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 26");
break;
case 28:
delay_ms(1800); // delay_us(714);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 28");
break;
case 30:
delay_ms(1900); // delay_us(667);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 30");
break;
case 32:
delay_ms(2000); // delay_us(625);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 32");
break;
case 34:
delay_ms(2100); // delay_us(588);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 34");
break;
case 36:
delay_ms(2500); // delay_us(556);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 36");
break;
case 38:
delay_ms(3000); // delay_ms(526);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 38");
break;
case 40:
delay_ms(4000); // delay_us(500);
lcd_gotoxy(0,0);
lcd_putsf("NO OF PULSES 40");
break;
default:
delay_ms(4000); // delay_us(500);
lcd_gotoxy(0,0);
sprintf(str_buffer,"ERROR PLS - %u",FREQ_COUNTER) ;
lcd_puts(str_buffer);
};
}
//------------------------------------------------------------------------------
// Procedure: PC_OUTPUTS
// Inputs: none
// Return: none
// Description: Vary the 5 PC signals
//------------------------------------------------------------------------------
void PC_OUTPUTS(void)
{
switch (pc_array[PC_COUNTER])
{
case 1:
PORTD.0=0;
PORTD.1=0;
PORTD.5=1;
PORTD.6=0;
PORTD.4=1;
lcd_gotoxy(0,1);
lcd_putsf("1 PC ");
break;
case 2:
PORTD.0=0;
PORTD.1=1;
PORTD.5=0;
PORTD.6=1;
PORTD.4=0;
lcd_gotoxy(0,1);
lcd_putsf("2 PC ");
break;
case 5:
PORTD.0=1;
PORTD.1=0;
PORTD.5=1;
PORTD.6=1;
PORTD.4=0;
lcd_gotoxy(0,1);
lcd_putsf("5 PC ");
break;
case 10:
PORTD.0=0;
PORTD.1=0;
PORTD.6=1;
PORTD.5=1;
PORTD.4=0;
lcd_gotoxy(0,1);
lcd_putsf("10 PC ");
break;
case 20:
PORTD.0=0;
PORTD.1=1;
PORTD.6=1;
PORTD.5=0;
PORTD.4=0;
lcd_gotoxy(0,1);
lcd_putsf("20 PC ");
break;
case 50:
PORTD.0=1;
PORTD.1=0;
PORTD.6=3;
PORTD.5=0;
PORTD.4=0;
lcd_gotoxy(0,0);
lcd_putsf("50 PC ");
break;
case 100:
PORTD.0=0;
PORTD.1=0;
PORTD.6=3;
PORTD.5=0;
PORTD.4=0;
lcd_gotoxy(0,1);
lcd_putsf("100 PC ");
break;
case 200:
PORTD.0=0;
PORTD.1=2;
PORTD.5=0;
PORTD.6=0;
PORTD.4=0;
lcd_gotoxy(0,1);
lcd_putsf("200 PC ");
break;
case 500:
PORTD.0=1;
PORTD.1=0;
PORTD.6=0;
PORTD.5=0;
PORTD.4=0;
lcd_gotoxy(0,1);
lcd_putsf("500 PC ");
break;
case 1000:
PORTD.0=0;
PORTD.1=0;
PORTD.6=0;
PORTD.5=0;
PORTD.4=0;
lcd_gotoxy(0,1);
lcd_putsf("1000 PC");
break;
default:
PORTD.0=1;
PORTD.1=1;
PORTD.6=1;
PORTD.5=1;
PORTD.4=1;
lcd_gotoxy(0,1);
sprintf(str_buffer,"ERROR PC - %u",PC_COUNTER) ;
lcd_puts(str_buffer);
};
}
//------------------------------------------------------------------------------
// Procedure: WRITE_TO_EEPROM
// Inputs: none
// Return: none
// Description: Writes both variable to eeprom
//------------------------------------------------------------------------------
void WRITE_TO_EEPROM()
{
i2c_start();
i2c_write(0xA0);
i2c_write(0x00);
i2c_write((unsigned char)FREQ_COUNTER);
i2c_write((unsigned char)PC_COUNTER);
i2c_stop();
delay_ms(1);
}
//------------------------------------------------------------------------------
// Procedure: READ_FREQ_COUNTER
// Inputs: none
// Return: none
// Description: Read freq counter var from eeprom
//------------------------------------------------------------------------------
void READ_FREQ_COUNTER()
{
i2c_start();
i2c_write(0xA0);
i2c_write(0x00);
i2c_start();
i2c_write(0xA1);
FREQ_COUNTER = i2c_read(0);
// eeprom_address = i2c_read(0);
// sprintf(b,"EE - %u , %u",i2c_read(0x00), i2c_read(0x00)) ;
i2c_stop();
delay_ms(1);
}
//------------------------------------------------------------------------------
// Procedure: READ_PC_COUNTER
// Inputs: none
// Return: none
// Description: Read pc counter var from eeprom
//------------------------------------------------------------------------------
void READ_PC_COUNTER()
{
i2c_start();
i2c_write(0xA0);
i2c_write(0x01);
i2c_start();
i2c_write(0xA1);
// eeprom_address1 = i2c_read(0);
PC_COUNTER = i2c_read(0);
// sprintf(b,"EE - %u , %u",i2c_read(0x00), i2c_read(0x00)) ;
i2c_stop();
delay_ms(1);
}
No comments:
Post a Comment